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Reducing costs and development times are two of the main challenges for aircraft engine 
designers. In particular, multi-disciplinary design is a very time-consumming process. 
Effectively this kind of design must solve antagonistic objectives handled by different specialists 
and it is often a challenge to converge towards a satisfying trade-off between disciplines within 
the planned timespan. 

Here we describe different complementary methods based on high pressure compressor 
(HPC) blade design. We have developed a new common geometrical model and a fully 
automated aerodynamic and mechanical design process which enables us to carry out multi-
disciplinary optimizations with powerful algorithms.

The methodology available with these new numerical tools has been successfully applied to 
the design of the first stage of a HPC at Snecma. Promising results validating the gain provided 
by this approach are then discussed and compared to HPC blade design common experience.

Nomenclature

ANN = Artificial Neural Network
CAD-CAM = Computer Aided Design and Manufacturing
DOE = Design Of Experiments
FEA = Finite Element Analysis
GAP = Global Assimilation Process
HPC = High Pressure Compressor
LE / TE = Leading / Trailing Edge 
MDO = Multi-Disciplinary Optimization
NS3D = Navier-Stokes 3D
NURBS = Non Uniform Rational B-Splines
SM = Surge Margin

iβ = fluid inlet/outlet angle

Ω = rotor angular speed
m& = mass flow
η = isentropic efficiency 
Π = pressure ratio
σ = Von Mises stress
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I. Introduction

With the improving performance of both computers and numerical methods, parametric optimization is now 
often introduced in the design cycle of simple isolated parts.  However, optimization remains difficult to use in the 
case of multi-disciplinary and complex design such as HPC blade design. Effectively this design is still a complex 
iterative process with several goals to reach  – mass flow, pressure ratio, efficiency, stall margin, operating lifetime–
which requires highly expert skills in the associated disciplines: aerodynamics, mechanics and thermics. 

Consequently, we cannot optimize directly all standard design parameters of each discipline because they would 
be too numerous in the context of industrial design cycle. Moreover, we must transform the current process, 
independant aerodynamic and mechanical optimizations, into a parallel and integrated process by introducing a cost 
function relevant with a multi-disciplinary approach. Finally we have to solve complex coupled non-linear 
optimization problems.    

Snecma is involved in two complementary projects to overcome these difficulties.
The first one deals with the improvement of the iterative design process. We have succeeded in providing a new 

common definition for blade geometries based on a continuous surface, better than the previous definition based on 
sections, and a new designer-friendly blade modeler which simultaneously takes into account aerodynamic, 
mechanical and manufacturing constraints. The development of this parameterized model is the first step for  the 
introduction of a new multi-disciplinary HPC blade design process.

The second project should help us to reach two ambitious goals : to provide fast and robust optimization 
algorithms using up-to-date mathematics, then to demonstrate design cycle time reduction and innovative concept 
development using these algorithms on industrial cases. Among the identified cases, the improvement of HPC blade 
design was one of the most challenging due to the antagonisms between aerodynamic and mechanical criteria.    

In this paper we will first describe the new blade modeling strategy and  its introduction in the newly adapted 
HPC blade design process, then we will focus on a particularly efficient optimization algorithm developed by the 
Mathematical Institute of Toulouse (IMT) based on an artificial neural network (ANN). In the third part we will 
show how these new tools can help designers improve directly aerodynamic and mechanical performances with the 
presentation of a HPC blade aerodynamic optimization under mechanical constraints. 

II. A new blade model

A. Introduction of a common blade definition
The previous standard blade geometry definition was “discrete”: the blade was described by several sections, 

either plane or linked to a flow path, in the form of lists of points. This definition comes from the first step of 
aerodynamic compressor blade design. Effectively to match pressure or Mach number distribution along streamlines 
imposed by the first 2D performance computation, we use a 2D inverse method which gives sections.

Although this description with points is simple to use, it has several disadvantages for the next step of the blade 
design. The main problem is its non-continuous definition : between sections, the blade geometry is dependent of the 
interpolation algorithm used in CAD-CAM tools. Another default is the lack of bijection between a blade defined by 
plane sections, used by mechanical designers, and a blade defined by aerodynamic sections, introducing 
discrepancies in the long iterative design process. 

Consequently, we decided to replace the section-based definition of the blade by a unique mathematically 
rigorous surface. The same object is handled via this new standard definition throughout the various phases of the 
process. The selected format, NURBS, allows to describe complex geometries and is implemented in most CAD 
tools and in particular CATIAV5, the CAD-CAM software selected by Snecma.

A Snecma in-house tool, TurboGeom, creates the NURBS surfaces from initial sections, using the global 
interpolation method described in Ref. 1 and, optionally, a smoothing algorithm to avoid potential oscillations. This 
results in a unique blade definition described by two high quality surfaces, the suction side and the pressure side,  
with tangential continuity along the LE and TE (cf. Fig 1).
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Figure 1. Blade NURBS Surface in TurboGeom

Now mechanical and aerodynamics designers use the same blade definition in their own design iteration.

B. SuMo : the Surfacic Modeler
As all designers will work on the same surfacic blade definition, we must give them possibility to modify it. 

Moreover, for the modeler to be used in optimization processes, it must integrate a clever parameterization that 
respects geometric constraints to obtain a continuous design domain and limits the number of variables to control the 
blade surfaces.

These are the two main ideas which drove the development of SuMo. Consequently, SuMo is a modeler based 
on well-known design parameters rather than a purely geometrical modeler. It allows to modify an initial blade 
surface created with TurboGeom through 2/3D delta laws defined by designer. Figure 2 explains how SuMo works 
with low compressor blade example.

 

Figure 2. SuMo description
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The available parameters include 2D parameters like the inlet and outlet solid angles, the stagger angle, the 
center of gravity, the chord, the maximum thickness and its position. 

C. Improvement of compressor blade design process
The design of a compressor blade is currently performed through so-called “aero-mechanical iterations”. In 

practice, the goals of mechanical design - low stresses to increase operating lifetime - and aerodynamic design -
pressure ratio and mass flow - often lead to opposite designs. For example aerodynamically, thickening the blade 
introduces flow losses while it improves mechanical behavior as long as mass does not increase too much.   

The old design process was iterative and manual (cf. Fig. 3a). It implied numerous iterations and at the end 
engineers had to reach a compromise between performances in the different disciplines. Furthermore, the lack of a 
single model hindered exchanges of blade geometries between engineers during the iterations. 

With the new tools described above we can propose a simplified parallel process which makes exchanges easier 
between the different design disciplines and introduces multi-disciplinary optimization (cf. Fig. 3b). The first step of 
this new process is performed with TurboGeom in order to create the initial  blade surface, then designers use SuMo 
to modify blade surfaces during the optimization loop.

Another improvement is to do with the treatment of blades geometry depending on the rotational speed of the 
module which they take part. A compressor blade with a thickness to chord ratio inferior to 15 % is subject to major 
deformations between its “cold” or manufacturing geometry and its “hot” or cruise geometry which corresponds to a 
high rotor speed . The link between “cold” and “hot” geometries is complex and was one of the causes of divergence 

Figure 3a. Description of the old iterative process

 
Figure 3b. Description of the new parallel process
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between mechanical and aerodynamic designs. Thanks to recent progress in the Samcef solver2, Snecma has succeed 
in computing the “cold” geometry from the initial “hot“ one in only one inverse non-linear computation.

The second advantage of this new process is due to the natural introduction of  a multi-disciplinary compromise 
during design which speeds up and improves the final result because iterations converge faster towards an 
equilibrium between opposite goals (cf. Fig. 4).      

III. Efficient optimization algorithm

A. Artificial Neural Network for optimization
Many optimization strategies proved their efficiency in aerodynamic or mechanical blade design3, 4. We can 

divide these strategies into two groups. The first strategy tries to optimize the problem directly by computing the 
cost functions on the whole numerical model for each iteration, whereas the second strategy uses a surrogate model.

In industrial multi-disciplinary blade design, a direct optimization using 3D detailed model would take too long 
in computing time and it could only be efficient using a linearized model provided by adjoint techniques. This 
method is not yet validated for low-Reynolds flows even if many studies underline interesting progress5.

Surrogate model approach has at least two major advantages. It allows the use of powerful optimization 
algorithms as computing time does not increase highly with the number of objectives evaluation because they are 
computed analytically using the surrogate model. What is more with this strategy, designers can still learn about 
correlations between parameters and objectives post-processing the surrogate model even if the final result of the 
optimization does not satisfy them.

Building a surrogate model is an open problem with many algorithms available: response surfaces, artificial 
neural networks (ANN), polynomial regression, kriging, multivariate adaptative regression splines, radial basis 
functions6. Interesting properties of these models should be their ability to efficiently detect sensitive parameters and 
to catch  global non-linear behavior starting from a linear number of initial sample points with regards to the number 
of parameters.

In the last decade, ANN have become one of the most popular solutions because of their properties regarding 
these two major characteristics.

B. GAP : Global Assimilation Process
The IMT laboratory has developed a three-layer ANN (cf. Fig. 5), chosen for its quality of universal 

approximator in the case of continuous functions. The GAP software was initially programed during previous 
thesis7. It is characterized by a supervised training of the ANN based on a low memory Levenberg-Marquardt 
algorithm using the forward and reverse modes of the algorithmic differentiation. It also combines several 
regularization techniques to assume generalization qualities. 

This last point is particulary important because it enables a better training of the ANN avoiding over-learning 
and  local minima attraction which are common problems with these kinds of algorithm.

Figure 4. Advantage of multidisciplinary
integrated process
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Using this metamodel, an iterative process with successive optimizations on an ever improved neural network is 
carried out. This idea has been validated as a pertinent way to optimize aerodynamically a blade design for the last 
five years8, 9. 

The  basic diagram of this process is shown on the following scheme :

We use GAP in a modular way to keep the possibility to modify how we will use the three phases of the process: 
learning, optimization and improvement. Effectively, we can change the algorithm of optimization phase or the 
strategy of ANN improvement.  

For example a first possibility adds regularization during the successive neural network training mixed with 
gradient-based algorithm for the optimization phase. In this manner we obtain finally an approximated model 
catching accurately the cost function close to the optimum and only the global tendencies of the function in the other 
parts of  the design domain. The idea behind this strategy is to learn only what interests us which minimizes the 
number of real function computation. The figure 6 shows the result of such an approach. We can remark that the 
final model fits the trend of the parabolic Rastrigin function without following the finest variations introduced by the 
cosinus which may simulate function local minima or even numerical noise due to remeshing. 

In a second way, we will try to learn as much as possible about the problem everywhere in the design domain 
then we optimize on this precise approximated model with a genetic algorithm to catch the global minima. This 
method generally needs more points than the previous approach, but we can monitor in real-time its generalization 
abilities with a measurement process such as cross-fold validation10 to verify that we have not overfit the data. This 
is the main risk with this approach whereas the previous strategy can sometimes miss interesting local behavior. 

Figure 5. Description of a three-layer neural networks
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The possibility to easily combine several validated elementary algorithms is a major gain for Snecma because we 
no longer need to store and support a large number of black-box algorithms each with their own specificities. On 
contrary we have built an efficient optimization toolbox usable for all optimization problems.  

C. Improvement of GAP for blade design
From the initial GAP software, recent work11 handles the improvement of the optimization step in GAP in the 

context of the first methodology described above, regularization and gradient optimization. 
This recent work adds three algorithms to speed up the convergence of the optimization: 
§ domain control adaptation,
§ point stacking escape,
§ introduction of a maximum of the cost function during optimization  

1. Domain control adaptation
The optimization method developed in GAP for the gradient optimization approach starts with a small DOE 

whose size is proportional to the number of parameters. Thus we limit the risk of being quickly caught in a local 
optimum, but unfortunately this slows down the second iterative phase of the optimization. 

To remedy this problem, we introduce an adaptive strategy to narrow the design space. If two successive optima 
do not vary with regards to a particular parameter, we will reduce the initial range of this parameter and similary an 
abrupt variation related to one parameter will increase the research domain size for this parameter, obviously 
without extending the initial domain limit. 

The idea, inspired by trust region methods12, is therefore to progressively reduce the range of those parameters 
that have no influence on the optimization process.

Figure 6. Example of optimization with GAP on Rastrigin function
using domain control adaptation
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2. Point stacking escape
As we near convergence during the gradient optimization phase, the last points accumulate and this limits 

precision of the ANN which loses its generalization abilities. Consequently a geometry-based method substitute a 
new point for the optimum result of the running iteration. This new point respects two constraints: to be in a sphere 
centered on the computed optimum with a radius which is a parameter of the algorithm and to be as much as 
possible at equal distance of the optimum of the previous iteration.

This method prevents the final loss of generalization when we are close to convergence and reduces significantly 
the distance between the optimum of the objectives and the final point given by the algorithm.

3. Introduction of maximum solution during optimisation
The Tabu search, introduced by F. Glover in the late 80’s, is an heuristic local search method used to solve 

complex problems. The aim of this method is to accept to sometimes follow an unexplored and unpromising 
direction to escape from local minima. 

In the Gap optimization phase, we translate this idea by adding a point with a high value on top of the optimum 
for the successive training of the neural network. This maximum is computed only in domains where the ANN has 
few information. 

Consequently, we improve the knowledge of the global tendencies of the problem which will speed up the 
convergence of the optimization process.

D. Results : Optimization improved with new algorithms
We have carried out many tests on analytical functions in order to validate the different methods presented in 

§3.2. Here we will detail our results. We compare the error on the exact optimum of the function for each algorithm 
for a fixed number of  function evaluation.

Test functions used are:
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In Table 1, M1, M2, M3 and M4 represent:
M1 is initial optimization method with regularization and gradient optimization,
M2 = M1 + improvement strategy: domain control adaptation,
M3 = M2 + improvement strategy: point stacking escape,
M4 = M3 + improvement strategy: introduction of maximum solution during optimization 

We observe in Table 1 that these strategies provide a significant improvement of the accuracy of the function’s 
optimum for a fixed number of evaluations. In the same way, if we reverse the problem and work with a 
convergence criterium, the method M4  will need fewer function evaluations than method M3 to reach the optimum.   

Table 1 : Analytical results for different strategies
(*) Gain (X %)  is calculated with formula: (M1 – M{2,3,4}) / M1
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4. HPC Blade Optimization 

A. Building optimization process
The strategy for parametric optimization at Snecma is generic. We divide it into four steps :
§ Identification of standard design process to automate
§ Creation of the identified workflow and dataflow in the Optimus platform
§ Choice of objectives, constraints and parameters
§ Selection of the best adapted optimization algorithm to explore the design space and carry out 

optimization and/or robust design.
Thus we do not attempt to develop specific numeric analysis tools which would not be used for the standard 

design.  However  this decision drives our development program roadmap because we require for every numerical 
tools taking part of an optimization process to ever ensure this specification. 

Most of our design and analysis tools are therefore plugged into the optimization platform selected by Snecma, 
Optimus. This software, developed by Noesis (cf. Fig. 7), already includes drivers to connect with commercial FEA 
solver like Samcef or Abaqus and CAD platform like CatiaV5. Then Optimus provides all state-of-the art local, 
global, robust and multi-objective algorithms13 as well as the possibility to easy integrate our own algorithms such 
as GAP.

B. Description of multi-disciplinary optimization 
1. Introduction to Snecma HPC  blade design

HPC design is a challenging issue because of  its role in operability and specific fuel consumption and 
consequently the difficulties to provide high performance and stability assessment with efficient matching of the 
whole compressor stage without decreasing vibration and stress margins on components with high speeds.  The 
documentation on this subject is very rich and we suggest that interested readers refer to Ref. 14 and 15.

As we translate the new parallel process discussed in §2.3 with tools adapted to Snecma HPC design (cf. Fig. 8), 
we introduce the following program in order of appearance in the process : SuMo for blade modeler, Patran and 
Autogrid for mechanical and respectively aerodynamic pre-processing (mesh, boundary conditions), Samcef for 
FEA and elsA for NS3D solver, then several minor Snecma tools for post-processing and process integration.

Figure 7. Example of template and post-processing generated with Optimus
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For aerodynamic computation we use a periodic mesh with the standard O-4H topology with two million cells 
for the stage composed of a rotor and a stator (cf. Fig. 9). Effectively we do not use coarse grid to avoid optimizing 
unvalidated configurations providing wrong improvements that we would notice too late during the last validation 
phase. We also initialise the computation with the pressure field of the initial blade in order to reduce the number of 
iterations required to converge the NS3D computation for each experiment. 

For the mechanical computation we have the possibility to use a reduced model by introducing a super-element  
for the disk part (cf. Fig. 10) which is divided into periodical sectors using cyclically symmetric approach. This 
allows to take into account advanced dynamical criteria such as crossings between blade eigenfrequencies  and rotor 
harmonics for a wide frequency range.

Figure 8. Tools and process for HPC blade optimization

Figure 9. View of aerodynamic mesh for a full compressor stage
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Using a supercomputer, a single experiment comprising two NS3D computations and six dynamic and static 
mechanical computations for 2 diameters takes three hours. We have possibility to transform our sequential 
optimization scheme into a parallel one especially during the initial DOE phase which reduces the final computation 
time.   

2. Definition of the MDO problem
We have carried out many optimization attempts in order to validate the selection of sensitive parameters and of 

the best cost function to improve HPC blade design. In the next paragraph we present the results of an aerodynamic 
optimization under mechanical constraints for an HPC stage. 

We start from a rotor blade with good efficiency and mass flow characteristics while respecting most of the static 
or dynamic margins. The aim of the described optimization is to improve efficiency at the design point, close to the 
operating line and for cruising speed, but in a multipoint  strategy. Effectively it is very important to be convinced 
that all the forget constraints would be taken by the optimizer like some degree of freedom for its research. 
Consequently we will face to unexpected changing at the end of  the optimization process for the function we would 
not have add to constraints.

Let’s precise the optimization problem :
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with  DS = Design Space, DP = Design Point, SM = Surge Margin and SDR = Snecma Design Requirement
 ∆ = blade displacement and ∆ i N_ freq j = margin between ith rotor harmonic and jth blade eigenfrequency

The constraints are drawn on the following characteristic graph of the stage (cf. Fig 11a) and rotor blade 
campbell diagram  (cf Fig 11b). 

Figure 10. Validation of disk SE (left) with example of high frequency stripe blade mode
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Aerodynamic constraints must force the initial characteristic to be at least preserved for all off-design point.   
Although it is mainly an aerodynamic gain we are seeking, we will not change specific aerodynamic parameters 

such as 1β , 2β for the two following reasons : initial blade was already optimized with regards to these parameters 
and they do not have any influence on mechanical criteria whereas we also have to improve dynamic margins.   

The optimization process will consequently modify four parameters on the rotor blade : position of sections’ 
center of gravity, also called blade sections’ stacking, to give lean and/or sweep effect on blade, then chord and 
thickness. The stator is not modified. Every parameter is controled with four variables along the height of the blade. 
At the end we move 16 parameters to optimize the rotor 3D geometry.

C. Results
We have summarized values of the criteria for the initial blade in table 2. Aerodynamic criteria are normalized 

value and mechanical are given with their distance in percent to the Snecma Design Requirement. If the value is 
negative, we do not respect the criterium. 

Table 2. Criteria value of initial blade
We test the two strategies described in §3.2 on this problem with parameters indicated in the table 3. 

Table 3. Gap parameters

1. Gradient on regularized ANN (GAP_1)
This approach gives good results for isolated mechanical problems like bend momentum balancing but in this 

case we do not succeed in improving efficiency respecting all the constraints whereas we obtain good quality of 
generalization for the objective as graph on optimum prediction error shows (cf Fig. 12). In fact the main difficulty 
for GAP with this problem has been to regularize mechanical constraints because these are the output with the 
maximal prediction error. Consequently the iterative gradient optimization phase on the ANN drives us in direction 
of unacceptable design area where frequencies and maximal static stress constraints became all violated. 

 
 Figure 11a. aerodynamic constraints b. dynamic constraints
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Figure 12.  Error of the ANN predicted optimum for efficiency at design point

2. Evolutionnary algorithm on ANN (GAP_2)
With the second strategy, the differential evolution algorithm (DEVO) available in Optimus is launched on the 

ANN with a population size of 160 and high crossover probability (0.85) because previous local and GAP 
optimization showed us the non-linearity of the problem. We fix the maximum number of population for the DEVO 
at 100.

Within this approach, ANN catches both the non-linearity behavior of the second bending and of the first torsion 
modes. We obtain at the 16th iteration a promising new geometry which respects all the mechanical criteria even the 
two which were KO for initial blade (cf. Table 4). 

Table 4. Results of optimum new blade
As often the objective is worse than the initial in the first iterations because ANN has not learned yet everywhere 

with precision whereas with global algorithm we explore all the design space. However, after ten iterations, it 
matches enough the design point efficiency to ever find an optimum with great improvement with regards to initial 
geometry (cf Fig. 13).  

We gain at the selected iteration more than 1% on design point efficiency which is a very interesting result close 
to the final result of a classical design cycle. Moreover we obtain it with only one optimization which takes 5 days 
and involved 140 full NS3D computations of two rows.     

The final geometry was slighty different from the initial one (cf. Fig. 14 a) and all the parameters have 
moved during the optimization process as we can see with the 4 chord laws drawing at different iterations (cf. Fig. 
14 b). 

Figure 13. Convergence graph
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Figure 14 a. Optimum law for parameter Epmax                       b. Chord law variation

Chord parameter influences all the criteria but especially frequencies margins and maximal static stress value. 
We can notice it was a very active constraint for this optimization to respect both the frequency margin between the 
6th rotor harmonic and the 2nd rotor blade eigenfrequency, •6N_F2, and the •6N_F3. Their antagonistic behavior is 
clearly shown on figure 15a where we can count only 8 experiments out of 25 which respect the two required 
margins. Effectively, it was difficult to get a more softness blade for the 2nd eigenfrequency blade, first torsion 
mode, while keeping the second bending mode stiff enough. However the optimum selected ensures the respect of 
the margin around the 6th harmonic for rotor speed superior to cruise speed. We still keep a 6N_F2 crossing for an 
idle speed which is not fully satisfying but anyway we have improved the initial status (cf. Fig. 15 b).

Another major difficulty deals with the value of maximal static stress on the blade. Effectively the new optimum 
rotor blade have pronounced forward sweep and local positive lean at casing which are well-known as acting 
positively on efficiency and surge margin. But at the contrary, it is also an origin of static overstress because it 
increases, under the effect of centifugal forces, the tensile stress of the suction side which is obviously very negative 
for the operating lifetime. The new chord and thickness laws provided by the optimization balance the effect of the 
new stacking laws enough to finally respect this static mechanical criterium (cf. Fig. 16). 

Now if we focus on the aerodynamic gain, we observe two major improvements on the performances of this 
stage.  

Firstly we have increased polytropic efficiency more than one percent at the design point very close to the 
maximal efficiency point (cf. Fig 17a). If we detail this gain, we notice on the radial efficiency distribution (cf. Fig. 
17b) that the improvements are located in the middle of the blade. 

Figure 15a.   6N_F2 & F3 margin during optimization b. Campbell diagram of optimum blade 
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Drawing the isentropic mach number along the chord for a section with a radius of 40% of the total blade span 
(cf. Fig. 17c), shows us a better smoothing of the Mach distribution as well as a reduction of the Mach number in 
front of the passage shock which explains why the losses have dropped.  

Secondly, the compressor stability seems to be better. Effectively, we have also increased the numerical stall 
margin (cf. Fig. 17a) which is a major point for compressor operability. Indeed the compressor have better abilities 
to accept low mass flow condition.

 
Figure 17a. Mass flow against b. Radial isentropic efficiency  c. Isentropic mach number – 40%

polytropic efficiency distribution

In the figure above, we also indicate the results of a direct gradient-based aerodynamic optimization, local 
optimization in the legend. With this optimization, we have achieved less than half of the efficiency gain of global 
optimization. No improvement was introduced close to surge point and moreover we had not taken in account the 
mechanical criteria in this optimization which were absolutely not respected as we finally verified. It emphasizes the 
great progress provided by the introduction of this multi-disciplinary optimization process associated to ANN.

5. Conclusions 
In this article we demonstrate how the improvements of the blade geometrical definition and of the process 

design are necessary in order to implement powerful multi-disciplinary optimization schemes. A highly efficient 
optimization algorithm developed in collaboration with the IMT Laboratory provides interesting results to reduce 
design cycle time and to obtain a better design respecting  all constraints. 

Figure 16.  Maximal blade stress during optimization

Introduction of Multi-Disciplinary 
Optimization in Compressor Blade Design 

 

RTO-EN-AVT-167 19 - 15 

 



Especially on the example selected, we notice how the optimization algorithm can greatly help engineers to find 
the optimal compromise between many objectives and constraints. Even if we already know the physical effect of 
the proposed optimum geometry in the separated disciplines, it is very difficult for engineers to qualify exactly the 
influence of each parameter in order to reach a geometry as interesting as the optimum found with the multi-
disciplinary scheme. It must also be underlined how important the physical review of the optimization results is, to 
discuss their validity and to allow experience feedback for design.  

Many complementary methods will be studied to continue this multi-disciplinary optimization project. 
Firstly, we must work on the algorithm. In particular, we will focus on the possibilities of making a better 

selection of the initial DOE data. The second aim of the thesis11 was to test the “sparse grid” numerical technique16

which leads to an adaptive selection of initial data points in order to improve the initial knowledge of the problem 
with a minimal number of expensive evaluations. This is promising work currently in progress. 

We will also naturally introduce in this multi-disciplinary problem a multi-objective approach such as well-
known Pareto front concept to estimate more accurately the trade-offs between several objectives. It would be 
especially dedicated to aeromechanical optimization of fan blades, which implies a multi-speed optimization to 
avoid flutter.

Another global direction of progress will be the reduction of computing time for each problem evaluation from a 
physical point of view, in addition to that provided by mathematical techniques such as metamodeling. This is called 
the multi-fidelity approach and consists in using lower-fidelity models. If they are well managed, they can perform 
the major part of the optimization with a lower computation cost. We also will test another way to reduce this 
computing time. Optimization for detailed level design needs ever more powerful and efficient computation means. 
Supercomputers will continue to increase their memory capacities and numerical tools will be more and more 
massively parallel but we can directly act on the optimization process to reduce computation time. For example an 
optimization management with a distributed asynchronous algorithm17 has recently shown its efficiency to speed up 
complex optimizations.

Further specific research studies are being currently carried out on the validation of an adjoint method linked to a 
gradient-based algorithm for low-Reynolds configurations which should be the next breakthrough for blade 
aerodynamic optimizations on turboengines. Effectively this would lead to major reduction of the blade shape 
optimization time as it has been demonstrated for airplane wings over the last decade.  

Finally, the introduction of robust design  is launched in parallel of this optimization project that will answer to 
the future norm which will oblige engineers to provide a secure margin assessment for each design validation. 

The future studies at Snecma detailed in the paragraph above are far from scanning all the work in progress in 
the field of multi-disciplinary design optimization. Others interesting ideas are described generally in Ref. 18 and in 
Ref. 19 which detail nearly all the promising new algorithms.
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